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LL MTRIC PLASTIC STRESS AND VELOCITY FIELD
By
R. T. Shielal

1., Introduction.

This note considers axially symmetric plastic stress
and velocity flelds in a perfectly plastic material which obeys
Tresca's yleld criterion of constsnt maximum shearing stress, k,
during plastic deformation., Axial symmetry of the plastic stress
field does not require the associated velocity field to be axially
symretric in general. In the following work, however, we shall

assume that the velocity field also possesses axial symmetry,

2, The Yield Condition.

According to Tresca's yield criterion the maximum
shearing stress, which is equal to one-half the difference between
the maximum and minimum principal shearing stresses, has the con-
stant value k during plastic deformation, States of stress can be
represented by points in a space in which the principal stresses
61y 9o 63 are used as rectangular Cartesian co-ordinates. The
states of stress which involve the maximum shearing stress k are
represented by the points on the surface of a right prism which
has a regular hexagon for its cross section. The axis of the prism
is equally inclined to the Oy O 03 axes and passes through the
origin, The section of the prism by a plane perpendicular to the
63-axis is shown in ¥ig. 1, The points on the hexagon A3CDEF

Ipe
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represent states of stress with the maximum shearing stress k and
the centre G of the hexagon has the co-ordinates (¢;, oy, 03).
Plastic flow can occur under states of stress re-
presented by points on the surface of the prism, that is by points
on the hexagon in Fig. 1. The material 1s isotropic so that the
principal axes of the plastic strain rate coincide with the prin-
cipal axes of stress. Thc principal components of the plastic

strain rate in the ¢, 05y 0, directions will be denoted by €19 Eo9

3
and 83 respectively, Thc plastic strain rate can be represented
in principal stress space by a ray with direction cosines propor-

tional to € The concept of perfect plasticity[ 1] re-

10 %20 f3e
quircs that the ray representing the plastic flow which could occur
under the state of stress represented by a point on the prism is
normal to the side of the prism on which the stress point lies,

If the stress point lies on a corner of the prism, the ray must lie
between the normals to the two sides of the prism which mect at

the corner, Since the axis of the prism is equally inclined to

the 8199 5y O, axes, it follows that the incompressibility condi-

3
tion

el+52+e3=0 (1)

must hold, The projection of the ray onto the plane of Fig. 1 is

a ray with direction cosines proportional to el, €, and perpendic-

2
ular to the side of the hexagon on which the stress point lies,
For a stress point coinciding with the vertex A, for ecxample, the

ray must lie in the angular spacc shown by the arrows in Fig. 1,



N . o

A11-98 3

The projection of thc ray onto Fig. 1 dctermines the plastic strain
rate to within an arbitrary factor since 53 can be found from (1)
when €&, and €, arc “nown,

We now list the various relations which hold between
the stresses and between the strain rates as the stross point moves
around the hexagon ABCDEF., In the following, N, p, and € denote
non-ncgative arbitrary parametcers. We shall assume that d12,0 2
so that we need only consider points to the right of the line 0'B,
(i) Stress point at B,

ol =0, = 03 + 2k, el t ey 8 e3 s Nt € -AN=ct,

(11) Stress point on AB,

gy = 0y + 2k, 0, >0

3 5 > 03. €)% € 53 =AN3 0t -\,

1

(111i) Stress point at A,

°1 = 03 + 2k, 02 = 03, el P 53 =N+ Ut =P 3 =N,

(iv) Stress point on AF,

6y = 0, + 2k, 0, < dq <0ye €y €51 €y T B ¢t ept O,

(v) Stress point at F,

69 = Oy + 2k, 0y = 03. els EVE, =} 8 =i = E3 E,

2" 3

(vi) Stress point on LF,

0, =0, =2k, 0

2 3 >0, >o_, E_t E 3. =03 -«€ 3 €,

37717 "2 "1t T2t T3

(vii) Stress point at E,

6, = 0y = - 2k, €,8 €,3 €, = =« N 3 = €3 N ¢+ ¢,

°3
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3. Axial Symmetry.

We takn the axlis of symmetry to be the z-axis and
usc cylindrical co-ordinates (r,®0,z)., Axial symmctry implics that
the non-zero strcsses are S do, ¢, and Trg? and the equations of

equilibrium become

!

. + T = 0
- (2)
OTrg + 2.‘! + rz = 0,
8z T i

The 6~direction 15 a principal stress direction so

that the principal stresses 01, 62, 03 arc given by
&

Op+d (0p=0 )2 2 1
o) = Ex=2 + {-—E—r Z+Trz) '

, , 5 (3)
Opt0 (6p=0,) 2 )¢

02=_1;2__z-{__1't_z__ +¢rz} :

°3=°°’ o

where we have taken the third principal stress direction to be the
©-direction and have taken 81 2 95

We dcnote the velocity components in the (r,e,z)
directions by u,v,w respectively., Since the velocity field is

axially symmetric, we have
u = u(r,z), v=0, w=w(r,z), (%)

and the non-zcro plastic strain components arc given by
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= QU = = Q¥ = AU W
Er H’eo-%’sz-%i’er %E"'%I-.o (5)

The incompressibility condition (1) becomes
Q 4+ 0 4 8¥ 40, (6)
or r 9z

The prineipal components of the plastic strain rate arce given by
Ept€ 2 2 %
€y =% ¢ %({(er'ez) +erj’

(7)

€ pie 2 2 ) %
% - %g(er'ez) *¥r23

% = EQ‘ -

In the following sections we examince the restrictions

€2

imposed by axial symmetry upon thc plastic stress ficld and asso-
clated velocity ficld in states of stress roprescnted by points on

the hexagon in Fig. 1.

4, Strcss Point _at B or E,

For thce stress points B and E we have

where the upper sign refers to the stress point B, The condition

6, = 0y gives immediately from (3),

r 2 9 Trz = 0,

The equations of equilbrium (2) arc therefore, since 63 = 0 »
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221 e O,
82
Thus, for this ficld wec have
6_=0_=o0_, + 2k = ¢ 2k log A
r z e - R

where A 1s a constant and where the upper and lower signs refer to
he stress points B and E respectively.

The plastic strain ratcs must bc such that

€y 3 €5 1 g = # N +e s ¥NFe

using the samc convention for th> signs. Since €g = w/r, it fol-

lows that
u<O0for Band u 0 for E,

The components u and w must be such that

2, 2%
€L+ E, 2 {.(er -€,) 4 er} for B,

2 . 2 y¢%
leg + ¢l > ({_(er-ez) +er} for E,

since ¢ arc both positive for B and both ncgative for E,

1’ %2
A discontinuity in thc velocelity ficld can only occur

across a surfacc on which the shecaring stress has the maximum value

k. The shearing stress in the r,z planc i3 everywherc zero so that

the componcnts u,w must be continuous functions,
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5. Stress Point on AB or FF.
For states of stress representcd by points on AB, we

have

el bE, eO =ANg 0Ot -\,

It follows from (5) and (7) that

+

EL+E 2 2 3
r-z 1 - 1 =
uSO’T‘?{(EI‘ ez) L A 0.
Thus, u and w arc to be determined from the equations

.QE-V-E -0--& =O,

ar r 8z
2 ) au 2 ) (8)
U - (3u 2 _ (qu _ u _ au
Do -2t

and the condition u < 0, The field is thercfore kincmatically
determinate in the sensc that there are two differential cquations
for the two componcnts of velocity., Vhen the veloeity ficld is
known, the stress ficld is obtained from thc two cquations of

equilibrium, the yield condition

6, = ¢

1 = + 2k, 0, >0, >

3 1 2 3?

and the condition that the principal axes of stress must coincide
with the principal axes of the strain rate,

Analogous rcmarks apply when the stress point 1lies
on EF, u and w are determined from equations (8) and thc condi-
tionu > O,

The velocity componcents u, w must be continuous since

the shcaring stress in the r,z plane is less than k,
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6. Stress Point on AF.

In this case,

€y t€pteg=pt =p 30,

Since
"

condition then shows that aw/8z

= uw/r, this gives immcdiately u = O, The incompressibility

0 so thet w = w(r). The stralin

componcnts arc thercfore

- .. dw
=0 Yoz " &7 °

Since the principal axcs of stress and strain coincide

we must havc

0, = 0, °
Also o, = 0, + 2k, so that 1 =t k using (3). The equations of
equilibrium (2) become
=
or r
2 7
O .k _
3 v O
and have tho solution
= : .EZ "
o, =+ 3L+ t(r), ‘l\

o, = + KZ 4 £(r) & %? +rf'(r) = % g% {:r f(r);}- -l

) T
The function f(r) is rostrictcd by the condition

0 =k<o.<0d_+k
r r

<

s A
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7. Stross Point at 4 or I,

- -

The hypothesis of Ilaar and von Karmidn [2] postulatcs
that during axially symmctric plastic flow the circumferential
stress a° is equal to onec of the principal stresses dl, 02 in the
ry2z planc, In certain problems, the stress ficld is statically
dcterminate under this hyopthesis., Ishlinsky [3] has used the
hypothcsis to calculate the indentation pressurc in the indentation
of a plane surface by a flat circular punch, Thec author obtaincd
a plastic stress ficld around the punch but it was not shown that
the ficld could bec cxtended throughout the body in a satisfactory
manncr. Also it rcmains to bc shown whether a velocity ficld can
be assoclated with thc stress ficld or not,

At the stress points A and F the circumfcerential stress
is cqual to the minimum or maximum principal stress in the r,z
planc respectively, as in the hypothesis, We consider first the
stress point F,

For states of stress represented by the point F,

9) =0, + 2k, o) =0,

so that, from (3),

2 2 2
(or-oz) +1:rz=k ,oo=

8c¥dz , k. (9)

Lo L

We put
p=-§(or+oz)

and denote by ¢ the angle of inclination of the first shear line
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in the r,z plane to the r-axis, as shown in Fig, 2. From the yield
condition (9) it follows that

-

P -k sin2p ,

P+ ksin2yp
Z ’ ~ (10)
rz = k cos 29,

Q
i
s

[0}
n
]

a9
n

Q
"

0 -p+ko _J
It can be shown that the shear lines are the characteristic lines
of the hyperbolic system of differential ecuations (3) and (9),
and the following relations hold

O on an a-line,_l

j (11)
O on an P-line,

In the relations (10) the first and second shear lines are called

dp+2kd¢+k(1+tanq>).@.1;

"3
i

dp - 2k d9 + kX (1 + cos ¢) %?

a- and B-lines respectively.

The plastic strain rates satisfy
€t €5 1 e3 =P s =P =-€1cE€

so that we have, with (5) and (7),

er+ez=-e,-‘l%=e°=e,
Ce — e 32 402 N7 2
((ep =€) 4 Yrg 3 =€ + 2 ,

where p and ¢ are positive, Thus the velocity field must be such

that
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2 2 42
u 20, (38 - 87 + (44 + &) 2?:!* (12)
The velocity components are determined from the incompressibility
condition (6) and the condition that the principal axes of stress
and strain coincide, i.e,

fu o Qw
_Q.&__@%_ = - cot 29,

or 0z
It is found that the characteristics of the velocity field coincide
with the chuaracteristics of the stress field., The relations along

the characteristics are

du + tan @dw + U & - 0 on an a-line,
2cos~p T
= (13)
du = cot g dw + —U___ dF =0 on a P-line,
2sin“@ T N

If uq , uB denote the velocity components along thea, 8 lines

so thrt

Uy = u cos @ + w sing,

ua=-u sing + wcoso,

the relations (11) can be written

- ... 9_,_ = =u -1:
du, ug ap TeosH T or ds,; on an a-line,
(14)
- _u _dr _ =-u -
duB + ug d9 = iy T ﬂlr dsB on a P-line,

where dsa ’ dsB are the elements of length along the a,8 lines,

el e o O
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The velocity field is determined from equations (13) or (1l4) and
conditions (12),

The situation at the stress point A is very similar,
The first of equations (9) and the first three of equations (10)
hold while

d°=—T- -k—-p"ko

The relations along the characteristic lines (the shear lines) are

now

dp + 2k dp - k (1 - tan @) %} 0 on an a-line,

q (15)
dp -2k & =~ k (1 - cot @) 1§.= O ona B-line,
The velocity components must be such that
ugo, (du. 9&)2 + (Qu 4 .Q!)2 5 u2 (16)
' "dr Bz az or = 2

and along the characteristics the relations (13) and (14) hold.,

It can be secn from above that the equations for the
stress and velocity components are similar, although more complicated,
to the corresponding equations for plastic flow under conditions of
plane strain., The conditions (12) or (16) are analytical statements
of the condition that the rate of doing plastic work during the
deformation must be positive., The corresponding condition for plane-
strain plastic flow has been occasionally overlooked in the litera-

ture,
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8. A Simple Example,
In this section a simple example will be given of an

axially symmetric stress field with an associated velocity field,

In Fiz, 3, the circular cylinder OAD is compressed by
a flat smooth punch on the end OA, The curved surface of the
cylinder is stress free and the plastic stress field is simply a
longitudinal compression of amount 2k and zero radial and circum=
ferential stresses, In the terminology of this note, stress fileld
is everywhere at the stress point F in Fig., 1. The shear lines are
straight lines inclined at 45 degrees to the axis of the cylinder;
AB is an g-line, BD is a B-line,

The velocity boundary conditions are that the end of
the cylinder OA moves as a plane surface so that w has a constant
value on OA, The shear rate y,, must be zero, since Trz is zero,
so that in view of the incompressibility condition (6) the conditions
(12) will be satisfied if u > O and if au/dr, dwMAz are of different
slgn, If the region of plastic flow 1s restricted to the region
OAC, a velocity field satisfying these conditions and the velocity
boundary conditions cannot be found, VWe outline a velocity field
which involves plastic flow in the region OADB,

In OAB the velocity components are ta''en to be given

by

u=12r, w=1 -z, (17)

viaere the length of.OB is the unit of length and the upward velocity
of the pungh is talen to be unity. The velocity fleld (17) satisfies
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incompressibility, the boundary conditions on OA, the condition
Ypz = 0, and the conditions (12) for positive plastic work, The
velocity field in the region ABC 1s determined from the equations
(13) and the velocity conditions across BD, AB. On the character-
istic BD, which separates the material at rest from the material in
motion, we must have u = w, and since the velocity is zero at B,
the velocity components are zero along 8D, from the first of equa-
tions (13), . The normal velocity across AB is known from the velocity
field in OAB, and it 1is found that the velocity field is continuous
across AB, The field determined in this way in region ABD is found
to satisfy the conditions (12)., Thus the velocity field is com-
patible with the stress field, Fig. 4 shows the deformation of a
square grid in the r,z plane which would occur if the incipient
velocity field was maintained feor a short period of time.

Reversing the sign of the stress oz and the signs of
the velocity componcent gives a solution to the case when the end
OA 1s subject to a uniform tension 2k, The stress field is then

represented by the stress point A,
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